Газообразное топливо классификация и элементарный состав. Жидкое топливо и его характеристика


Введение

Общие сведения о топливе

Классификация топлива

Свойства топлива

Понятие об условном топливе

Процессы горения

Горение газообразного топлива

Горение твердого топлива

Горение жидкого топлива

Заключение

Список литературы

топливо горение летучий


Введение


Роль топлива в народном хозяйстве велико и все время возрастает. Современные предприятия машиностроения являются крупнейшими потребителями энергии и энергоносителей, в частности такого вида энергии, как топливо. Топливо играет очень важную роль в жизни человека, так как топливо во многом удовлетворяет человеческие потребности. Например, газ. С помощью газа мы отапливаем дома, на газовой плите готовим еду. Многие автомобилисты переходят с бензина на газ, так как он дешевле. Твердые топлива, такие как уголь, древесина также служат для отопления домов, в основном деревенских, и бань.

Основным источником получения жидких топлив является нефть. Для более рационального использования нефть подвергают разгонке на отдельные составляющие (фракции). Для этого ее нагревают до различных температур, а получаемые при этом в определенных пределах температур пары подвергают охлаждению (конденсируют). Таким способом получают различные бензины, лигроин, керосин, соляровое масло и отходы - мазут, которые используют в промышленности.

Целью данного реферата является разобрать сущность топлива, его разновидности, его применение, а также рассмотреть основные процессы горения жидких, твердых и газообразных топлив.


Общие сведения о топливе


В настоящее время основным источником энергии на земле является химическая энергия топлива. За счет природного ископаемого топлива получают от 70 до 80% всей потребляемой энергии.

Топливо - это вещество, которое при сжигании выделяет значительное количество теплоты и используется как источник получения энергии. Топливо может быть естественным, имеющимся в природе, и искусственным, получаемым переработкой естественного.

Топливо состоит из горючей и негорючей частей. В твердом топливе горючая часть содержит пять элементов: углерод, водород, серу, кислород и азот. Углерод, водород и горючая сера участвуют в горении топлива, а азот и кислород составляют балласт горючей части (внутренний топливный балласт). К негорючей части (внешнему балласту) относят неорганические вещества, переходящие после сжигания топлива в золу, а также во влагу. Зола представляет собой минеральный остаток, получаемый при полном сгорании топлива. В ее состав входят такие окислы: MgO, CaO, Na2O, K2O, FeO, Fe2O3 и др. Тугоплавкая зола (с температурой плавления выше 1425 °С) представляет собой легко удаляемую сыпучую массу, легкоплавкая зола (с температурой плавления ниже 1200 °С) - твердый остаток (шлак) в виде сплошной слипшейся массы или отдельных кусков. Влага подразделяется на внешнюю и внутреннюю. Внешняя влага является результатом попадания в топливо влаги из окружающей среды. Внешнюю влагу удаляют высушиванием топлива. Внутренняя влага подразделяется на гигроскопическую (находящуюся в адсорбированном состоянии с поверхностью частиц топлива) и гидратную (входящую в состав молекул некоторых соединений, т. е. химически связанную).

Твердое и жидкое топлива представляют собой комплекс сложных органических и минеральных соединений и состоят из горючей и негорючей частей.

Молекулярная и химическая структура горючей части изучена не достаточно полно и до настоящего времени не поддается подробной расшифровке. Вследствие этого химический состав горючей части выявить чрезвычайно сложно. Структура и химические соединения, входящие в негорючую часть, наоборот, исследованы достаточно подробно.

Органическое твердое и жидкое топлива характеризуются элементарным составом, который условно представляют как сумму всех химических элементов и соединений, входящих в топливо. При этом их содержание дается в процентах к массе 1 кг топлива. Элементарный состав не дает представления о молекулярной и химической структуре топлива. Для твердого и жидкого топлив элементарный состав можно записать в следующем виде:


C + H + Sл + O + N + A + W = 100%


В горючую часть топлива входят углерод, водород и сера (летучая). Летучая сера Sл - это сера, входящая в состав органических соединений и серного колчедана FeS2.

При изучении свойств твердого и жидкого топлив различают их рабочую, сухую, горючую и органическую массы. Составу каждой массы присваивается соответствующий индекс: рабочей - р, сухой - с, горючей - г и органической - о.

Топливо в том виде, в каком оно поступает к потребителю и подвергается сжиганию, называется рабочим, а масса и ее элементарный состав - соответственно рабочей массой и рабочим составом. Элементарный состав рабочей массы записывают следующим образом:

Сухая масса топлива в отличие от рабочей массы не содержит влаги и может быть представлена равенством:

Зольность топлива всегда проверяется только по сухой массе топлива.

Горючий состав топлива не содержит внешнего балласта, т. е. влаги и золы, и может быть записан так:

Название «горючая масса» - условное, так как действительно горючими ее элементами являются только С, Н и Sл. Состав горючей массы ископаемого топлива зависит от характера и условий происхождения топлива, а также от его геологического возраста (т. е. глубины происшедших необратимых превращений в органических веществах).

Содержание углерода в твердом топливе растет с его геологическим возрастом, а содержание" водорода уменьшается. Так, например, содержание углерода в торфе составляет Сг = 50÷60 %, в буром угле С = 60÷75 %, в каменном угле Сг = 75÷90 %. С уменьшением геологического возраста содержание растительных остатков в топливе увеличивается.

Во всех теплотехнических расчетах состав топлива берется по его рабочей массе, являющейся наиболее полной характеристикой состояния топлива перед его сжиганием.


Классификация топлива


В зависимости от характера использования топливо подразделяется на энергетическое, технологическое и комплексное. В последнее время все чаще прибегают к комплексному энергетическому использованию топлива, сущность которого заключается в том, что топливо предварительно подвергают технологической обработке в целях выделения из него ценных веществ, используемых в качестве сырья для химической промышленности. Остаточный продукт используется как энергетическое топливо (в процессе полукоксования, переработки горючих сланцев и др.)

По максимальной температуре, получаемой при полном сгорании, топливо бывает высокой жаропроизводительности (более 2000 °С - природный газ, нефтепродукты, каменный уголь) и пониженной жаропроизводительности (менее 2000 ° С - бурые угли, торф, дрова).

По агрегатному состоянию их делят на твердые, жидкие и газообразные. Твердое топливо в основном образуется из высокоорганизованных растений - древесины, листьев, хвои и т. п. Отмершие части высокоорганизованных растений разрушаются грибками при свободном доступе воздуха и превращаются в торф - рыхлую, расплывчатую массу перегноя, так называемых гуминовых кислот. Скопление торфа переходит в бурую массу, а затем в бурый уголь. В дальнейшем под воздействием высокого давления и повышенной температуры бурые угли подвергаются последующим превращениям, переходя в каменные угли, а затем в антрацит. К жидкому топливу относятся: нефтепродукты, производящиеся путем перегонки сырой нефти; креозот, являющийся продуктом низкотемпературного коксования и возгонки угля; синтетические масла, образующиеся в результате сжижения угля; прочие виды жидкого топлива, например, производящиеся из растений (картофель, рапс и т.д.) Состав газообразного топлива выражается содержанием в нем отдельных газов в процентах. В газообразном топливе также имеется как его горючая часть, так и негорючая, образующая его балласт.


Свойства топлива


1. Теплота сгорания

Количество теплоты, выделяемое при полном сгорании твердого, жидкого или газообразного топлива в нормальных условиях, называется теплотой сгорания. Выделение теплоты при горении топлива объясняется тепловым эффектом реакций горения.

Не все составляющие, входящие в состав рабочей массы топлива, выделяют теплоту при горении. Влага топлива при переходе в пар поглощает теплоту; сера, входящая в состав сульфатов, при их диссоциации также поглощает теплоту. Условно различают высший предел теплоты сгорания топлива, если влагу в продуктах сгорания учитывают в виде жидкости, и низший предел теплоты сгорания, если влагу в продуктах сгорания считают паром.

Зольность и влажность

Зола и влага снижают качество топлива и являются нежелательными примесями. Влага снижает теплоту сгорания, затрудняет воспламенение топлива; влажное топливо труднее транспортировать. Зола представляет собой минеральную массу. Она может содержаться в веществе, послужившем образованию топлива, или попасть в него при залегании в недрах земли как случайная примесь. Например, угли с пористой структурой типа бурых содержат в порах выкристаллизовавшиеся из грунтовых вод соли. Зола препятствует полному сгоранию топлива, образуя на поверхности кусков горящего топлива воздухонепроницаемый слой. Если зола плавится, то спекшиеся ее куски образуют шлак, еще более препятствующий выгоранию кокса, чем рассыпчатый зольный остаток.

Сернистость

Сера является нежелательной примесью в топливе, несмотря на то, что она в виде серного колчедана повышает его теплоту сгорания. При горении серы образуется ядовитый сернистый газ, присутствие которого в рабочем помещении даже в незначительных количествах ухудшает условия труда. Присутствие в среде при тепловой обработке сернистого газа ухудшает качество готовой продукции. Во влажной среде при низких температурах сернистый газ образует пары серной кислоты, вызывающие коррозию металлических частей тепловых установок.

Летучие горючие вещества и коксовый остаток

Из твердого топлива, нагретого до температуры 870-1070К без доступа окислителя, выделяются парогазообразные вещества, которые называются летучими. Летучие вещества представляют собой продукты распада сложных органических веществ, содержащихся в органической массе топлива. В состав летучих веществ входят молекулярный азот N2, кислород O2, водород Н2, окись углерода СО, углеводородные газы СН4, С2Н4 и т. д., а также водяные пары, образующиеся из влаги, содержащейся в топливе.

Химический состав летучих веществ зависит от условий процесса нагревания топлива. Сумма летучих веществ обозначается V и относится только к горючей массе.

Твердый остаток, который получается после нагревания топлива (без доступа окислителя) и выхода летучих, называется коксом. В состав кокса входят остаточный углерод и зола. В зависимости от условий нагревания в твердом остатке кроме золы может оказаться часть элементов (С, N, Бл, Н), входящих в состав сложных органических соединений, для термического разложения которых требуется более высокая температура. В этом случае твердый остаток называется полукоксом.

По своим механическим свойствам твердый остаток (кокс) может быть порошкообразным, слабоспекшимся и спекшимся. Свойство некоторых углей (коксующихся) давать спекшийся, механически прочный кокс используется для получения металлургического кокса, применяемого в доменном процессе.

Понятие об условном топливе


Условное топливо - понятие, введенное для более удобного сравнения отдельных видов топлива, суммирования их и установлении количественной замены одного вида топлива другим.

В качестве единицы условного топлива принимается 1 кг топлива с теплотой сгорания 7000 ккал/кг (29,3 Мдж/кг). Соотношение между условным топливом и натуральным топливом выражается формулой:

где By - масса эквивалентного количества условного топлива, кг;

Вн - масса натурального топлива, кг (твёрдое и жидкое топливо) или м3(газообразное);

Низшая теплота сгорания данного натурального топлива, ккал/кг или ккал/м3;


Калорийный эквивалент.


Пересчет количества топлива данного вида в условное производится с помощью коэффициента, равного отношению теплосодержания 1 кг топлива данного вида к теплосодержанию 1 кг условного топлива.

Значение Э принимают: для нефти 1,4; кокса 0,93; торфа 0,4; природного газа 1,2.

Использование условного топлива особенно удобно для сопоставления экономичности различных теплоэнергетических установок. Например, в энергетике используется следующая характеристика - количество условного топлива, затраченное на выработку единицы электроэнергии. Эта величина g, выраженная в г условного топлива, приходящихся на 1 квт×ч электроэнергии, связана с кпд установки соотношением:

Приведение всех видов топлива к условному или к нефтяному эквиваленту дает возможность сопоставлять технико-экономические показатели работы топливопотребляющих установок, использующих различные виды топлива. Кроме того, это дает возможность сопоставлять запасы и добычу различных видов топлива с учетом их энергетической ценности. Также с помощью условного топлива можно составить топливный баланс или суммарный энергетический баланс отрасли, страны и мира в целом.


Процессы горения


Процесс горения топлива состоит из горения промежуточных продуктов его разложения: летучих горючих веществ и твердого остатка - кокса. Сначала горят летучие вещества, а затем кокс. Горению летучих веществ предшествует их разложение при нагревании на еще более простые вещества, которые сгорают пламенем в топочной камере над слоем топлива при взаимодействии с кислородом воздуха. Увеличение концентрации кислорода в воздухе, хорошее перемешивание с ним летучих веществ, своевременный отвод продуктов горения - все это способствует ускорению процесса сгорания летучих веществ.

Горение топлива - химическая реакция соединения горючих элементов топлива с окислителем при высокой температуре, сопровождающийся интенсивным выделением теплоты. В качестве окислителя используют кислород. Известно, что при низких температурах наличие топлива и окислителя не обеспечивает их химического соединения, называемого горением. Горение начинается только после того, как частицы прогрелись до температуры, обеспечивающей им энергию активации Е, достаточную для вступления в реакцию.

Горение - это в основном химический процесс, т.к. в результате его протекания происходит качественные изменения состава реагирующих масс. Но в то же время химическая реакция горения сопровождается различными физическими явлениями: перенос теплоты, диффузионный перенос реагирующих масс и др. Время горения топлива складывается из времени протекания физических () и химических процессов ():


= .


Время протекания физических процессов состоит из времени, необходимого для смешивания топлива с окислителем () и времени, в течении которого топливо - воздушная смесь подогревается до температуры воспламенения (tн):


tФИЗ = tСМ + tН


Время горения (tГОР) определяется скоростью наиболее медленного процесса.


Горение газообразного топлива


Процесс горения газообразного топлива гомогенный, т. е. и топливо, и окислитель находятся в одном агрегатном состоянии и граница раздела фаз отсутствует. Для того чтобы началось горение, газ должен соприкасаться с окислителем. При наличии окислителя для начала горения необходимо создать определенные условия. Окисление горючих составляющих возможно и при относительно низких температурах. В этих условиях скорости химических реакций имеют незначительную величину. С повышением температуры скорость реакций возрастает. При достижении некоторой температуры газовоздушная смесь воспламеняется, скорости реакций резко возрастают и количество теплоты становится достаточным для самопроизвольного поддержания горения. Минимальная температура, при которой происходит воспламенение смеси, называется температурой воспламенения. Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси, условий зажигания, условий отвода теплоты в каждом конкретном устройстве и т. д. Например, температура воспламенения водорода находится -в пределах 820-870 К, а окиси углерода и метана - соответственно 870-930 и 1020-1070 К.

Горючий газ в смеси с окислителем сгорает в факеле. Факел - некоторый определенный объем движущихся газов, в котором протекают процессы горения. В соответствии с общими положениями теории горения различают два принципиально различных метода сжигания газа в факеле-кинетический и диффузионный. Для кинетического сжигания характерно предварительное (до начала горения) смешивание газа с окислителем. Газ и окислитель подаются сначала в смешивающее устройство горелки. Горение смеси осуществляется вне пределов смесителя. В этом случае скорость процесса будет лимитироваться скоростью химических реакций горения.

Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса в данном случае будет ограничена скоростью смешивания газа с воздухом.

Разновидностью диффузионного горения является смешанное (диффузионно-кинетическое) горение. Газ предварительно смешивается с некоторым количеством воздуха. Этот воздух называется первичным. Образовавшаяся смесь подается в рабочий объем. Туда же отдельно от нее поступает остальная часть воздуха (вторичный воздух).

В топках котельных агрегатов чаще используются кинетический и смешанный принципы сжигания топлива. Диффузионный способ чаще всего используется в технологических промышленных печах.

Горение газа происходит в узкой зоне, называемой фронтом горения. Газ, предварительно перемешанный с окислителем, сгорает во фронте горения, который называется кинетическим. Этот фронт представляет собой поверхность раздела между свежей газовоздушной смесью и продуктами сгорания. Площадь поверхности кинетического фронта горения определяется скоростью химических реакций.

В случае диффузионного сжигания газа образуется диффузионный фронт горения, который является поверхностью раздела между продуктами сгорания и смесью газа с продуктами сгорания, диффундирующими навстречу потоку газа. Площадь поверхности этого фронта определяется скоростью смешивания газа с окислителем.

Важнейшей характеристикой горения газообразного топлива является скорость нормального распространения пламени - скорость, с которой перемещается фронт горения по нормали к своей поверхности в направлении набегающей газовоздушной смеси. Основными факторами, от которых (зависит скорость нормального распространения пламени, являются реакционная способность газа, его концентрация в смеси, температура предварительного подогрева смеси.

Другая важная особенность горения газовоздушных смесей - наличие концентрационных пределов. Различают нижний (НПВ) и верхний (ВПВ) концентрационные пределы воспламенения. Горение газа прекращается, если его концентрация в смеси будет меньше, чем концентрация на НПВ, или больше, чем на ВПВ. Это связано с тем, что при малых концентрациях газа теплоты становится явно недостаточно для поддержания реакции. При больших концентрациях газа ощущается нехватка окислителя, что приводит также к уменьшению количества теплоты и спаду температуры во фронте горения ниже температуры воспламенения.


Горение твердого топлива


Процесс горения состоит из следующих стадий:

Подсушка топлива и нагревание до температуры начала выхода летучих веществ;

Воспламенение летучих веществ и их выгорание;

Нагревание кокса до воспламенения;

Выгорание горючих веществ из кокса.

Из всех этих стадий определяющей является стадия горения коксового остатка, т. е. стадия горения углерода, интенсивность которой и определяет интенсивность топливосжигания и газификации в целом. Определяющая роль горения углерода объясняется следующим.

Во-первых, твердый углерод, содержащийся в топливе, является главной горючей составляющей почти всех натуральных твердых топлив. Так, например, теплота сгорания коксового остатка антрацита составляет 95% теплоты сгорания горючей массы. С увеличением выхода летучих веществ доля теплоты сгорания коксового остатка падает и в случае торфа составляет 40,5% теплоты сгорания горючей массы.

Во-вторых, стадия горения коксового остатка оказывается наиболее длительной из всех стадий и может занимать до 90% всего времени, необходимого для горения.

И, в-третьих, процесс горения кокса имеет решающее значение в создании тепловых условий протекания других стадий. Следовательно, основой правильного построения технологического метода сжигания твердых топлив является создание оптимальных условий для процесса горения углерода.


Горение жидкого топлива


Каждое жидкое горючее, так же как любое жидкое вещество, при данной температуре обладает определенной упругостью пара над своей поверхностью, которая увеличивается с ростом температуры.

Наибольшее практическое применение имеет метод сжигания жидкого топлива в распыленном состоянии. Распыление топлива позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем.

Температура кипения жидких топлив всегда ниже температуры их самовоспламенения, т. е. той минимальной температуры среды, начиная с которой топливо воспламеняется и в дальнейшем горит без постороннего теплового источника. Эта температура выше, чем температура воспламенения, при которой топливо горит только в присутствии постороннего источника зажигания (искры, раскаленной спирали и т. п.). Вследствие этого при наличии окислителя горение жидких топлив возможно только в парообразном состоянии. Это обстоятельство является важнейшим для понимания механизма процесса горения жидкого топлива. Процесс этот можно разделить на следующие стадии:

Нагревание и испарение топлива;

Образование горючей смеси (перемешивание паров топлива с окислителем);

Воспламенение горючей смеси;

Горение смеси.

Капля жидкого топлива, попавшая в нагретый объем, температура которого выше температуры самовоспламенения, начинает частично испаряться. Пары топлива смешиваются с воздухом, и образуется паровоздушная смесь. Воспламенение происходит в тот момент, когда концентрация паров в смеси достигнет величины, превышающей ее значение на нижнем концентрационном пределе воспламенения. Горение затем поддерживается самопроизвольно за счет теплоты, получаемой каплей от сжигания горючей смеси. Начиная с момента воспламенения скорость процесса испарения возрастает, так как температура горения горючей паровоздушной смеси значительно превышает начальную температуру объема, куда вводится распыленное топливо.

При зажигании жидкого горючего, имеющего свободную поверхность, загорается его пар, содержащийся в пространстве над поверхностью, образуя горящий факел. За счет тепла, излучаемого факелом, испарение резко увеличивается. При установившемся режиме теплообмена между факелом и зеркалом жидкости количество испаряющегося, а следовательно, и сгорающего горючего достигает максимального значения и далее остается постоянным во времени.

Температура жидкого горючего, при которой пары над его поверхностью образуют с воздухом смесь, способную воспламениться при поднесении источника зажигания, называется температурой вспышки.

Поскольку жидкие горючие сгорают в паровой фазе, то при установившемся режиме скорость горения определяется скоростью испарения жидкости с ее зеркала.

Процесс горения жидких горючих со свободной поверхности происходит следующим образом. При установившемся режиме горения за счет тепла, излучаемого факелом, жидкое горючее испаряется. В восходящий поток горючего, находящегося в паровой фазе, посредством диффузии проникает воздух из окружающего пространства. Полученная таким образом смесь образует горящий факел в виде конуса, отстоящего от зеркала испарения на 0,5-1 мм. Устойчивое горение протекает на поверхности, где смесь достигает пропорции, соответствующей стехиометрическому соотношению горючего и воздуха. Это предположение следует из тех же соображений, что и в случае диффузионного горения газа. Химическая реакция протекает в очень тонком слое фронта факела, толщина которого не превышает нескольких долей миллиметра. Объем, занимаемый факелом, зоной горения делится на две части: внутри факела находятся пары горючей жидкости и продукты сгорания, а вне зоны горения - смесь продуктов горения с воздухом.

Горение восходящих внутри факела паров жидких топлив можно представить состоящим из двух стадий: диффузионного подвода кислорода к зоне горения и самой химической реакции, протекающей во фронте пламени. Скорости этих двух стадий не одинаковы: химическая реакция при имеющих место высоких температурах протекает очень быстро, тогда как диффузионный подвод кислорода является медленным процессом, ограничивающим общую скорость горения. Следовательно, в данном случае горение протекает в диффузионной области, а скорость горения определяется скоростью диффузии кислорода в зону горения. Так как условия подвода кислорода к зоне горения при сжигании различных жидких горючих со свободной поверхности примерно одинаковы, следует ожидать, что скорость их горения, отнесенная к фронту пламени, т. е. к боковой поверхности факела, также должна быть одинаковой. Длина факела будет тем больше, чем больше скорость испарения.

Специфической особенностью горения жидких горючих со свободной поверхности является большой химический недожог. Химический недожог является прежде всего следствием общего или локального недостатка воздуха в зоне горения. Каждое горючее, представляющее собой углеродистое соединение при сжигании со свободной поверхности, имеет свойственную ему величину химического недожога, которая составляет, %:

для спирта......... 5,3

для керосина........ 17,7

для бензина........ 12,7

для бензола......... 18,5.

Картину возникновения химического недожога можно представить следующим образом: парообразные углеводороды при движении внутри конусообразного факела до фронта пламени при нахождении в области высоких температур при отсутствии кислорода, подвергаются термическому разложению вплоть до образования свободного углерода и водорода.

Свечение пламени обусловливается нахождением в нем частиц свободного углерода. Последние, раскалившись за счет выделяемого при горении тепла, излучают более или менее яркий свет. Часть свободного углерода не успевает сгорать и в виде сажи уносится продуктами сгорания, образуя коптящий факел. Кроме того, наличие углерода вызывает образование СО. Высокая температура и пониженное парциальное давление СО и СО2 в продуктах сгорания благоприятствуют образованию СО. Присутствующие в продуктах сгорания количества углерода и СО обусловливают величину химического недожога. Чем больше содержание углерода в жидком топливе и чем меньше он насыщен водородом, тем больше образование чистого углерода, ярче факел, больше химический недожог.

Таким образом, исследования горения жидких горючих со свободной поверхности показали, что:

Горение жидких топлив происходит после их испарения в паровой фазе. Скорость горения жидких топлив со свободной поверхности определяется скоростью их испарения за счет тепла, излучаемого зоной горения, при установившемся режиме теплообмена между факелом и зеркалом испарения;

Скорость горения жидких горючих со свободной поверхности растет с увеличением температуры их подогрева, с переходом к горючим с большей интенсивностью излучения зоны горения, меньшей теплотой парообразования и теплоемкостью и не зависит от величины и формы зеркала испарения;

Интенсивность излучения зоны горения на зеркало испарения, горящего со свободной поверхности жидкого горючего, зависит только от его физико-химических свойств и является характерной константой для каждого жидкого горючего;

Теплонапряжение фронта диффузионного факела над поверхностью испарения жидкого горючего практически не зависит от диаметра тигля и рода топлива;

Горению жидких горючих со свободной поверхности присущ повышенный химический недожог, величина которого характерна для каждого горючего.

Имея в виду, что горение жидких топлив происходит в паровой фазе процесс горения капли жидкого горючего можно представить следующим образом. Капля жидкого топлива окружена атмосферой, насыщенной парами этого горючего. Вблизи от капли по сферической поверхности устанавливается зона горения. Химическое реагирование смеси паров жидкого топлива с окислителем происходит весьма быстро, поэтому зона горения весьма тонка. Скорость горения определяется наиболее медленной стадией - скоростью испарения горючего. В пространстве между каплей и зоной горения находятся пары жидкого топлива и продукты горения. В пространстве вне зоны горения - воздух и продукты сгорания. В зону горения изнутри диффундируют пары топлива, а снаружи - кислород. Здесь эти компоненты смеси вступают в химическую реакцию, которая сопровождается выделением тепла. Из зоны горения тепло переносится наружу и к капле, а продукты сгорания диффундируют в окружающее пространство и в пространство между зоной горения и каплей. Однако механизм передачи тепла еще не представляется ясным.

Ряд исследователей считает, что испарение горящей капли происходит за счет молекулярного переноса тепла через застойную пограничную пленку у поверхности капли.

По мере выгорания капли из-за уменьшения поверхности общее испарение уменьшается, зона горения суживается и исчезает при полном выгорании капли.

Так протекает процесс горения капли полностью испаряющихся жидких топлив, находящейся в покое в окружающей среде или движущейся вместе с ней с одинаковой скоростью.

Количество кислорода, диффундирующее к шаровой поверхности при прочих равных условиях, пропорционально квадрату ее диаметра, поэтому установление зоны горения на некотором удалении от капли обусловливает большую скорость ее горения по сравнению с такой же частицей твердого топлива, при горении которой химическая реакция практически протекает на самой поверхности.

Скорость горения капли жидкого топлива определяется скоростью испарения, и время ее выгорания можно рассчитать на основе уравнения теплового баланса ее испарения за счет тепла, получаемого из зоны горения.

Таким образом, процесс горения жидкого топлива можно разбить на следующие фазы:

распыление жидкого топлива;

испарение и образование газовоздушной смеси;

воспламенение горючей смеси и горение последней.

Температура и концентрация газовоздушной смеси изменяются по сечению струи. По мере приближения к внешней границе струи температура повышается, а концентрация компонентов горючей смеси падает. Скорость распространения пламени в паровоздушной смеси зависит от состава, концентрации и температуры и достигает максимальной величины в наружных слоях струи, где температура близка к температуре окружающих топочных газов несмотря на то, что здесь горючая смесь сильно разбавлена продуктами сгорания. Поэтому воспламенение в мазутном факеле начинается у корня с периферии и затем распространяется вглубь струи на все сечение, достигая ее оси на значительном расстоянии от форсунки, равном перемещению центральных струй за время распространения пламени от периферии до оси. Зона воспламенения принимает форму вытянутого конуса, основание которого находится на малом расстоянии от выходного сечения амбразуры горелки.

Положение зоны воспламенения зависит от скорости смеси; зона занимает такое положение, при котором во всех ее точках устанавливается равновесие между скоростью распространения пламени и скоростью движения. Центральные струи, имеющие наибольшую скорость, затухают по мере продвижения в топочном пространстве, определяя длину зоны воспламенения местом, где скорость падает до абсолютной величины скорости распространения пламени.

Горение основной части парообразных углеводородов происходит в зоне воспламенения, занимающей наружный слой факела небольшой толщины. Горение высокомолекулярных углеводородов, сажи, свободного углерода и неиспарившихся капель жидкого топлива продолжается за зоной воспламенения и требует определенного пространства, обусловливая общую длину факела.

Зона воспламенения делит пространство, занимаемое факелом, на две области: внутреннюю и наружную. Во внутренней области протекает процесс испарения и образования горючей смеси.

Во внутренней области парообразные углеводороды подвергаются нагреву, который сопровождается окислением и расщеплением их. Процесс окисления начинается при сравнительно низких температурах - порядка 200-300°С. При температурах 350-400°С и выше наступает процесс термического расщепления.

Процесс окисления углеводородов благоприятствует последующему процессу горения, так как при этом выделяется некоторое количество тепла и повышается температура, а наличие кислорода в составе углеводородов способствует дальнейшему их окислению. Напротив, процесс термического расщепления является нежелательным, так как образующиеся при этом высокомолекулярные углеводороды сгорают трудно.

Из нефтяных топлив в энергетике применяется лишь мазут. Мазут представляет собой остаток от перегонки нефти при температуре порядка 300°С, но ввиду того, что процесс перегонки происходит не полностью, мазут при температурах ниже 300°С еще выделяет некоторое количество паров более легких погонов. Поэтому при входе распыленной струи мазута в топку и постепенном нагревании часть его превращается в пары, а часть еще может находиться в жидком состоянии даже при температуре порядка 400°С.

Поэтому при сжигании мазута необходимо способствовать протеканию окислительных реакций и всемерно препятствовать термическому разложению при высоких температурах. Для этого весь воздух, необходимый для горения, следует подавать в корень факела. В этом случае наличие большого количества кислорода во внутренней области будет, с одной стороны, благоприятствовать окислительным процессам, а с другой - понижать температуру, что обусловит расщепление молекул углеводородов более симметрично без образования значительного количества трудно сжигаемых высокомолекулярных углеводородов.

Смесь, получающаяся при сжигании мазута, содержит паро- и газообразные углеводороды, а также твердые соединения, образующиеся в результате расщепления углеводородов (т. е. все три фазы - газообразную, жидкую и твердую). Паро- и газообразные углеводороды, смешиваясь с воздухом, образуют горючую смесь, горение которой может протекать по всем возможным способам горения газов. Аналогично сгорает и СО, образовавшийся при горении жидких капель и кокса.

В факеле зажигание капель осуществляется за счет конвективного нагрева; вокруг каждой капли устанавливается зона горения. Горение капли сопровождается химическим недожогом в виде сажи и СО. Капли высокомолекулярных углеводородов при горении дают твердый остаток - кокс.

Образующиеся в факеле твердые соединения - сажа и кокс сгорают так же, как происходит гетерогенное горение частиц твердого топлива. Наличие накаленных частиц сажи обусловливает свечение факела.

Свободный углеводород и сажа в среде с высокой температурой при наличии достаточного количества воздуха могут сгореть. В случае же местного недостатка воздуха или недостаточно высокой температуры они сгорают не полностью с определенной химической неполнотой горения, окрашивая продукты сгорания в черный цвет - коптящий факел.

Химический недожог, характерный для горения жидких топлив со свободной поверхности при сжигании их в факеле, соответствующими режимными мероприятиями может и должен быть сведен практически к нулю.

Таким образом, для интенсификации сжигания мазута необходимо хорошее распыление. Предварительный подогрев воздуха и мазута способствует газификации мазута, поэтому будет благоприятствовать зажиганию и горению. Весь воздух, необходимый для горения, следует подавать в корень факела. Температура в факеле должна поддерживаться на достаточно высоком уровне и для обеспечения интенсивного завершения процесса горения в конце факела должна быть не ниже 1000-1050°С.


Заключение


На основании выше сказанного можно сделать следующие выводы. Топливо - это вещество, которое при горении выделяет теплоту, из которой можно получить энергию. Топливо может быть в трех агрегатных состояниях: твердое, жидкое и газообразное, каждый из которых может иметь свой молекулярный состав. Процесс горения у этих видов топлива происходит по-разному. Так для твердого топлива процесс горения проходит следующие стадии: подсушка топлива и нагревание до температуры начала выхода летучих веществ; воспламенение летучих веществ и их выгорание; нагревание кокса до воспламенения; выгорание горючих веществ из кокса. Последняя стадия является основной, так как она определяет интенсивность топливосжигания и газификации в целом.

Жидкое топливо сжигают обычно в распыленном состоянии. Распыление топлива позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем. Горение жидких топлив происходит после их испарения в паровой фазе. Скорость горения жидких горючих со свободной поверхности растет с увеличением температуры их подогрева.

Сжигание газов производится в топочной камере, куда горючая смесь подается через горелки. В топочном пространстве в результате сложных физико-химических процессов образуется струя горящего газа, называемая факелом. В зависимости от способа подачи воздуха, необходимого для горения, возможны следующие виды сжигания газов: горение однородной газовой смеси, когда сжигается предварительно подготовленная горючая газовая смесь; диффузионное горение газов, когда газ и воздух подаются раздельно; горение смеси газов с недостаточным количеством воздуха, когда газ подается в смеси с воздухом, но количество последнего недостаточно для полного сгорания.

Горение всех видов топлив позволяет получать тепловую энергию, которая может быть полезна во всех отраслях промышленности, но также это приводит к неблагоприятным последствиям, так как при горении в атмосферу попадают вредные вещества.

Также стоит отметить условное топливо, которое позволяет сопоставить тепловую ценность различных видов органического топлива.


Список литературы


1. Оптимизация городского газоснабжения (Ляуконис А. Ю.) Рецензент доктор техн. наук, проф. А. Ю. Гарляускас Л.: Недра, 1989

Теплотехническое оборудование, Цыпков В.Ш. Фокин К.Ф; Москва «Стройиздат», 1973

Интернет-ресурс: www.knowhouse.ru

Интернет-ресурс: www.belenergetics.ru

Интернет-ресурс: www.xumuk.ru/teplotehnika/051

Интернет-ресурс: www.bibliotekar.ru/spravochnik-4/27


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Требования, предъявляемые к качеству топлива
При применении и хранении к автомобильным бензинам предъявляются следующие требования.
Высокие энергетические и термодинамические характеристики продуктов сгорания. При горении бензина должно выделяться максимальное количество тепла, продукты сгорания должны иметь малую молекулярную массу, небольшие теплоёмкость и теплопроводность, высокое значение произведения удельной газовой постоянной на температуру горения (RT). Высокое значение RT желательно получить за счёт увеличения Т.
Хорошая прокачиваемость. Бензины должны надёжно прокачиваться по топливной системе машин, трубопроводам, насосам, системам регулирования и другим агрегатам и коммуникациям при любых условиях окружающей среды - низкой и высокой температурах, различных давлениях, запылённости и влажности.
Оптимальная испаряемость. В условиях хранения и транспортирования испарение должно быть минимальным. При применении в двигателе бензина должны иметь такую испаряемость, чтобы обеспечить надёжное воспламенение и горение топлива с оптимальной скоростью в камерах сгорания двигателей.
Минимальная коррозионная активность . Топлива не должны содержать компоненты, которые разрушают конструкционные материалы двигателя, средства хранения и транспортирования.
Высокая стабильность в условиях хранения и применения. Топлива в течение длительного времени не должны изменять физико-химические и эксплуатационные свойства.
Нетоксичность. Продукты сгорания также должны быть нетоксичными.

Свойства автомобильных бензинов
Бензины - топлива, выкипающие в интервале температур 28-2150С и предназначенные для применения в двигателях внутреннего сгорания с принудительным воспламенением. В зависимости от назначения бензины разделяются на автомобильные и авиационные.
Основными показателями бензина являются детонационная стойкость, давление насыщенных паров, фракционный состав, химическая стабильность и др. Ужесточение в последние годы экологических требований к качеству нефтяных топлив ограничило содержание в бензинах ароматических углеводородов и сернистых соединений.

Детонационная стойкость
Детонация возникает в том случае, если скорость распространения пламени в двигателе достигает 1500-2500 м/с, вместо обычных 20 - 30 м/с. В результате резкого перепада давления возникает детонационная волна, которая нарушает режим работы двигателя, что приводит к перерасходу топлива, уменьшению мощности, перегреву двигателя, к прогару поршней и выхлопных клапанов.

Октановое число (ОЧ)

ОЧ - условный показатель, характеризующий стойкость бензинов к детонации и численно соответствующий детонационной стойкости модельной смеси изооктана и н-гептана.
ОЧ изооктана принято за 100 пунктов, а н-гептана - за 0. Для автомобильных бензинов (кроме А-76) ОЧ измеряется двумя методами: моторным и исследовательским. Октановое число определяется на специальных установках путём сравнения характеристик горения испытуемого топлива и эталонных смесей изооктана с н-гептаном. Испытания проводят в двух режимах: жёстком (частота вращения коленчатого вала 900 об/мин, температура всасываемой смеси 149 0С, переменный угол опережения зажигания) и мягком (600 об/мин, температура всасываемого воздуха 52 0С, угол опережения зажигания 13 град.). Получают соответственно моторное (ОЧМ) и исследовательское ОЧ (ОЧИ). Разности между ОЧМ и ОЧИ называется чувствительностью и характеризует степень пригодности бензина к разным условиям работы двигателя. Среднее арифметическое между ОЧМ и ОЧИ называют октановым индексом и приравнивают к дорожному октановому числу, которое нормируется стандартами некоторых стран (например, США) и указывается на бензоколонках как характеристика продаваемого топлива.
При производстве бензинов смешением фракций различных процессов важное значение имеют так называемые ОЧ смешения (ОЧС), которые отличаются от расчётных значений. ОЧС зависят от природы нефтепродукта, его содержания в смеси и ряда других факторов. У парафиновых углеводородов ОЧС выше действительных на 4 пункта, у ароматических зависимость более сложная. Различие может быть существенным и превышать 20 пунктов. Октановое число смешения важно также учитывать при добавлении в топливо оксигенатов.

Фракционный состав (ФС)

ФС бензинов характеризует испаряемость топлива, от которой зависит запуск двигателя, распределение топлива по цилиндрам двигателя, полнота сгорания, экономичность двигателя. Испаряемость определяется температурой перегонки 10, 50 и 90 % (об.) выкипания фракций бензина. Температура выкипания 10 % бензина характеризует пусковые свойства. При температуре ниже предельных значений в системе питания двигателя могут образовываться паровые пробки, а при более высоких температурах запуск двигателя затруднён. В США пусковые свойства двигателя характеризуют количеством топлива, выкипающем до 70 0С. Температура выкипания 50 % характеризует скорость перехода двигателя с одного режима работы на другой и равномерность распределения бензиновых фракций по цилиндрам. Температура выкипания 90 % фракций и конца кипения влияют на полноту сгорания топлива и его расход, а также на нагарообразование в камере сгорания в цилиндре двигателя. В ГОСТ Р 51105-97, который действует с 01.01.99 г., ФС бензина определяется при температуре выкипания 70, 100 и 180 0С.

Давление насыщенных паров (ДНП)

ДНП даёт дополнительное представление об испаряемости бензина, а также о возможности образования газовых пробок в системе питания двигателя. Чем выше давление насыщенных паров бензина, тем выше его испаряемость. По ФС бензина рассчитывают индекс испаряемости.
Бензины, применяющиеся в летнее время, имеют более низкое ДНП. Для обеспечения необходимых пусковых свойств товарного бензина, в его состав включают лёгкие компоненты: изомеризат, алкилат, бутан, фр. н.к. - 62 0С.

Химическая стабильность (ХС)

В процессе хранения, транспортирования и применения бензинов возможны изменения в их химическом составе, обусловленные реакциями окисления и полимеризации. Окисление приводит к понижению октанового числа бензинов и повышению его склонности к нагарообразованию. Для оценки ХС используют показатели содержания фактических смол, индукционного периода окисления.

Активные сернистые соединения, содержащиеся в бензинах, вызывают сильную коррозию топливной системы и транспортных емкостей; полнота очистки бензинов от этих веществ контролируется анализом на медной пластинке. Неактивные сернистые соединения коррозию не вызывают, но образующиеся при их сгорании газы вызывают быстрый абразивный износ деталей двигателя, снижают мощность, ухудшают экологическую обстановку.
Среди ароматических соединений наиболее опасными для здоровья и жизни человека являются бензол и полициклические. Их токсическое действие объясняется возможностью его окисления в организме. В связи с этим в последних нормативных документах ограничено допустимое содержание серы, бензола и ароматических соединений в бензинах.

Классификация автомобильных бензинов

Существует несколько видов классификации автомобильных бензинов. Основные из них (наиболее часто применяемые): по испаряемости, по фракционному составу, по значению октанового числа.


Классификация по испаряемости

В зависимости от климатического района применения автомобильные бензины подразделяют на пять классов (см. табл. 1.1). Наряду с определением температуры перегонки при заданном объёме предусмотрено и определение объёма испарившегося бензина при заданной температуре. Введён также показатель «индекс испаряемости» (ИИ). ИИ бензина характеризует испаряемость бензина и его склонность к образованию паровых пробок при определённом сочетании давления насыщенных паров и объёма испарившегося бензина при температуре 70 0С. ИИ рассчитывают по формуле:

где ДНП - давление насыщенных паров, кПа; V70 - объём испарившегося бензина при температуре 70 0С, %.

Классификация автомобильных бензинов по испаряемости

Показатель Класс
1 2 3 4 5
Давление насыщенных паров, кПа 35-70 45-80 55-90 60-95 80-100
Фракционный состав:
начало кипения, 0 С, не ниже 35 35 не нормируется
10 %, 0 С, не выше 75 70 65 60 55
50 %, 0 С, не выше 120 115 110 105 100
90 %, 0 С, не выше 190 185 180 170 160
конец кипения, 0 С, не выше 215 215 215 215 215
Количество испарившегося бензина, % (об.) при 70 0 С 10-45 15-45 15-47 15-50 15-50
Индекс испаряемости, не более 900 1000 1100 1200 1300

Классификация по фракционному составу

В зависимости от фракционного состава автомобильные бензины разделяют на зимние и летние: для зимнего все температуры выкипания ниже, чем для летнего. Это значительно облегчает запуск двигателей при низких температурах в случае зимних и снижает риск возникновения паровых пробок в тёплое время года в случае летних.

Классификация по октановому числу

В зависимости от октанового числа по исследовательскому методу устанавливают четыре марки бензинов: «Нормаль-80», «Регуляр-92», «Премиум-95» и «Супер-98» (см. табл. 1.2). Бензин «Нормаль-80» предназначен для грузовых автомобилей наряду с бензином АИ-80. Бензин «Регуляр-92» предназначены для эксплуатации автомобилей вместо этилированного А-93. Автомобильные бензины «Премиум-95» и «Супер-98» полностью отвечают европейским требованиям и конкурентоспособны на нефтяном рынке и предназначены в основном для зарубежных автомобилей, эксплуатируемых в России.

Классификация автомобильных бензинов по октановому числу

Метод исследования

Марки
"Нормаль-80" "Регуляр-92" "Премиум-95" "Супер-98"
Октановое число, не менее:
моторный метод 76,0 83,0 85,0 88,0
исследовательский 80,0 92,0 95,0 98,0

Характеристики автомобильных бензинов. Нормы и требования к их качеству. Средние компоненты состава

Все бензины, вырабатываемые по ГОСТ 2084-77, в зависимости от показателей испаряемости делят на летние и зимние. Зимние бензины предназначены для применения в северных и северо-восточных районах в течение всех сезонов и в остальных районах с 1 октября до 1 апреля. Летние — для применения во всех районах кроме северных и северо-восточных в период с 1 апреля по 1 октября; в южных районах допускается применять летний бензин в течение всех сезонов.

Характеристики автомобильных бензинов

Показатели

АИ-80 АИ-92 АИ-95
Детонационная стойкость: октановое число, не менее:
моторный метод 76 85 85
исследовательский метод 93 95
Массовое содержание свинца, г/дм3, не более 0,013 0,013 0,013
Фракционный состав: температура начала перегонки бензина, °С, не ниже:
летнего 35 35 30
зимнего
10 % бензина перегоняется при температуре, °С, не выше:
летнего 70 70 75
зимнего 55 55 55
50 % бензина перегоняется при температуре, °С, не выше:
летнего 115 115 120
зимнего 100 100 105
90 % бензина перегоняется при температуре, °С, не выше:
летнего 180 180 180
зимнего 160 160 160
Конец кипения бензина, °С, не выше:
летнего 195 205 205
зимнего 185 195 195
Остаток в колбе, %, не более 1,5 1,5 1,5
Остаток и потери, %, не более 4 4 4
Давление насыщенных паров бензина, кПа:
летнего, не более 66,7 66,7 66,7
зимнего 66,7-93,3 66,7-93,3 66,7-93,3
Кислотность, мг КОН/100 см3, не более 1 0,8 2
Индукционный период на месте производства бензина, мин, не менее 1200 1200 900
0,1 0,1 0,1

Источник: ГОСТ 2084 - 77

Параметры автомобильных бензинов, вырабатываемых по ГОСТ 2084-77, существенно отличаются от принятых международных норм, особенно в части экологических требований. В целях повышения конкурентоспособности российских бензинов и доведения их качества до уровня европейских стандартов разработан ГОСТ Р 51105-97 “Топлива для двигателей внутреннего сгорания. Неэтилированный бензин. Технические условия”, который вводится в действие с 01.01.99 г. Этот стандарт не заменяет ГОСТ 2084-77, которым предусмотрен выпуск как этилированных, так и неэтилированных бензинов. В соответствии с ГОСТ Р 51105-97 будут вырабатываться только неэтилированные бензины (максимальное содержание свинца не более 0,01 г/дм3).
Нормы и требования к качеству автомобильных бензинов и характеристики испаряемости по ГОСТ Р 51105-97 приведены в таблице.

76 82,5 85 88 ОЧ (ИМ), не менее 80 91 95 98 Содержание свинца, г/дм3, не более 0,01 Содержание марганца, мг/дм3, не более 50 18 - - Содержание фактических смол, мг /100 см3, не более 5 Индукционный период бензина, мин, не менее 360 Массовая доля серы, %, не более 0,05 Объемная доля бензола, %, не более 5 Испытание на медной пластине Выдерживает, класс 1 Внешний вид Чистый, прозрачный Плотность при 15 °С, кг/м3 700-750 725-780 725-780 725-780

Классификацию топлив проводят по следующим критериям:

агрегатному состоянию;

теплоте сгорания;

исходному сырью и способам производства;

целевому назначению или области применения.

По агрегатному состоянию различают топливо твердое, жидкое и газообразное.

Твердое топливо для двигателей внутреннего сгорания применяют редко и только после газификации в газогенераторных уста* новках или в пылевидном состоянии.

Газогенераторные автомобили в сороковые годы получили некоторое распространение и сыграли положительную роль, особенно в тылу во время Великой Отечественной войны, высвободив тысячи тонн бензина для фронта. Для газификации обычно использовали древесные чурки или торф, и в относительно компактных газогенераторах, установленных непосредственно на автомобиле, перерабатывали твердое топливо в генераторный газ, на котором работали двигатели.

Опыты по применению для газификации каменного угля были неудачны, так как зона горения быстро забивалась шлаком. Позднее, в связи с развитием нефтедобывающей и нефтеперерабатывающей промышленности, газогенераторные автомобили потеряли свое прежнее значение. Пылевидное угольное топливо также не нашло применения в связи с его высокой зольностью.

Жидкое топливо является основным видом топлива для двигателей внутреннего сгорания всех типов и назначений.

Газообразное топливо с каждым годом приобретает все большее значение как заменитель жидкого топлива. По ряду свойств оно превосходит жидкое топливо, поэтому следует ожидать дальнейшего расширения области его применения.

По теплоте сгорания классификация важна в тех случаях, когда необходимо оценить топливо как энергоноситель, а также при тепловых расчетах двигателей, расчете объемов топливных баков и др. По этому признаку различают три группы топлив:

высококалорийные-с теплотой сгорания более 42 000 кДж/кг;

среднекалорийные - с теплотой сгорания 25 ООО-42 ООО кДж/кг;

низкокалорийные - с теплотой сгорания меньше 25 ООО кДж/кг.

По происхождению топливо классифицируют, если возникает необходимость оценить сырьевую базу или способы получения топлив.При этом все топлива делят на две группы: нефтяного и ненефтяного происхождения.

Часто топливо ненефтяного происхожедния называют альтерна* тивным топливом, желая тем самым противопоставить его топливу нефтяного происхождения. К альтернативным топливам относятся спирты, водород и почти все виды синтетических углеводородных топлив, т. е. искусственно полученные из ненефтяного сырья бензины, дизельные топлива и т. д. Особо рассматриваются природный газ и топлива, полученные из горючих сланцев (например, сланцевый бензин).

Поскольку методы переработки нефти имеют существенное значение для оценки показателей качества, то при классификации топлив по их происхождению нефтяные топлива можно дополнительно классифицировать по их технологическим признакам. Например, бензины могут быть подразделены на бензины, полученные прямой перегонкой (прямогониые), бензины термического или каталитического крекинга и т. д.

По целевому назначению топлива делятся на топлива для двигателей с искровым зажиганием (к ним относятся в основном бензины), дизельное топливо, топливо для турбореактивных двигателей и т. д. Эта классификация может быть и более подробной. Например, дизельное топливо различают для быстроходных двигателей (автомобильных, тракторных и ряда других транспортных машин), для средне- и малооборотных дизелей (судовых, стационарных) и др.

Органическое (углеводородное) топливо классифицируется:

1. По агрегатному состоянию – на твердое (уголь, торф, горючий сланец, растительное топливо), жидкое (нефть и продукты ее переработки), газообразное (природный и искусственный газы);

2. По происхождению – на естественное (добываемое из земных недр) и искусственное (получаемое в результате переработки естественного топлива и других природных веществ).

Основными характеристиками органического топлива являются: 1) элементарный химический состав; 2) удельная теплота сгорания; 3) выход летучих веществ; 4) зольность; 5) влажность; 6) сернистость.

Элементарный состав топлива . Состав твердого и жидкого топлива представляет сумму масс химических элементов: углерода С, водорода Н 2 , кислорода О 2 , азота N 2 , серы S, минеральных соединений А и влаги W. Сера может присутствовать в топливе в трех видах: органическая S 0 , колчеданная S к и сульфатная S c . Сумму S о +S к = S л называют летучей серой. В твердом топливе различают рабочую, сухую, сухую беззольную (горючую) и органическую массы, а в жидком – рабочую и сухую массы.

Состав рабочей массы: .

Индекс "р" означает, что состав топлива рассчитан на рабочую массу.

Состав сухой массы: .

Состав горючей массы: .

Состав органической массы: .

Элементы S, A и W – являются балластом органического топлива.

В справочниках приводится состав горючей массы топлива. Пересчет состава топлива с горючей на рабочую или сухую массу производится с помощью коэффициентов пересчета К гр, К гс:

Состав газообразного топлива представляет сумму долей объема компонентов: метана CH 4 , высших углеводородных соединений C m H n , водорода H 2 , азота N 2 , оксида углерода СО, диоксида углерода CO 2 , сероводорода H 2 S, кисло­рода O 2:

Удельная теплота сгорания топлива - это количество теплоты, выделившейся при полном сгорании единицы массы или объема топлива. Различают высшую и низшую удельную теплоту сгорания. Высшая удельная теплота сгорания Q р В – это количество теплоты, полученное при сгорании 1 кг твердого (жидкого) или 1 м 3 газообразного топлива (при температуре 0 °С и давлении 0,1013 МПа) и конденсации водяных паров, содержащихся в продуктах сгорания. Низшая удельная теплота сгорания Q р н не включает в себя теплоту конденсации водяных паров:

В расчетах используют низшую теплоту сгорания, так как продукты сгорания имеют температуру значительно выше, чем температура точки росы, при которой происходит конденсация водяных паров, содержащихся в продуктах сгорания. Низшая теплота сгорания твердого и жидкого топлива [кДж/кг] вычисляется по формуле Д.И. Менделеева:



Удельную теплоту сгорания газообразного топлива [кДж/м 3 ] определяют в расчете на сухую массу:

Для сопоставления различных видов топлива применяют понятие услов­ное топливо . При сгорании 1 кг условного топлива выделяется 29,3 МДж тепла ((Q р н) усл = 29,3 МДж/кг).

Выход летучих веществ характеризует жидкое и твердое топливо. Это смесь горючих и негорючих газов, выделяющихся из массы топлива при его нагревании от 110 до 1100° С. Чем больше выход летучих веществ, тем ниже температура воспламенения топлива и легче его зажигание. Данная характеристика зависит от возраста топлива и условий его формирования. Так, выход летучих веществ у торфа составляет 70%, бурого угля 45 ÷ 50%, каменных углей 25 ÷ 40%, у антрацита 3 ÷ 4%. Твердый остаток топлива после выхода летучих веществ называют коксом. Он может быть плотным, спекшимся или рыхлым. В энергетических установках используется топливо, непригодное для получения плотного кокса.

Зольность . Несгоревший остаток, образующийся после сгорания топлива и состоящий в основном из минеральных примесей, называется золой. Часть золы в процессе горения топлива под действием высоких температур оплавляется и превращается в шлак. Отношение массы золы к массе топлива в процентах называют зольностью. Бурые и каменные угли имеют зольность 10 ÷ 55%, сланцы 40 ÷ 60%, жидкое топливо 0,05 ÷ 1%. Зола уменьшает теплоту сгорания топлива, снижает интенсивность теплообмена вследствие осаждения на поверхностях нагрева, вызывает их износ, загрязняет окружающую среду.

Влажность – это количество влаги в топливе, выражен­ное в процентах. Повышенная влажность снижает теплоту сгорания топлива и вызывает трудности при его сжигании. Высокую влажность (до 50%) имеют бурые угли и торф, поэтому удельная теплота сгорания их невелика (8÷10 МДж/кг). Влажность каменных углей ниже и составляет 5 ÷ 8%.



Сернистость – это количество серы в топливе, выраженное в процентах. Наличие серы ухудшает качество топлива. При горении происходит соединение серы с кислородом, при этом образуется ядовитый газ. Происходит разрушение поверхности нагрева и выброс ядовитых газов в атмосферу.

Для сравнения топлива с различной влажностью, зольностью и сернистостью используют приведенные характеристики : характеристики рабочей массы топлива, отнесенные к его низшей теплоте сгорания (приведенные влажность W пр, зольность А пр и сернистость S пр, (%×кг)/МДж):

Топливо с W пр < 0,7 считается маловажным, а с W пр > 1,9 – высоковлажным. Топливо с A пр £ 1 – малозольное, а с A пр ³ 5 высокозольное.

Нефть и ее использование

Нефть образовалась в результате осадочных отложений в морской воде и недрах земли. Это бурая жидкость, имеющая своеобразный смоляной запах. Нефть состоит из трех углеводородных групп: 1) парафинов; 2) циклопарафинов (нафтены); 3) ароматических смол. В небольших количествах в нефти содержатся: сера (до 6%), кислород (до 4%), азот (до 1%) и следы некоторых металлов. По своим характеристикам (вязкость, цвет, содержание парафина и др.) нефть неоднородна, что обусловлено различным растительным происхождением и определяет возможность производства тех или иных нефтепродуктов.

Доля нефти в мировом энергетическом балансе составляет около 40%. По объему добычи нефти Россия занимает второе место в мире после Саудовской Аравии. Основные районы добычи в РФ: Западно-Сибирский, Волго-Уральский, Тимано-Печорский, Северо-Кавказский, север Сахалина. В Западной Сибири добывается самая дешевая и качественная нефть России. Глубина нефтеносных пластов достигает 2 км. Лидерами по добыче нефти в России являются компании «Роснефть», «Лукойл».

Добыча нефти. Разработка нефтяного месторождения начинается с бурения скважин. Буровая скважина использует ряд вращающихся стальных труб высокого давления, называемых установкой. Установка поддерживается буровой вышкой и управляется вращательным столом на платформе. Сначала из скважины бьет нефтяной фонтан, затем переходят на механизированные способы добычи: компрессорную, глубинно-насосную и др. После добычи нефть отделяется от сопутствующих воды и газов и перекачивается в нефтехранилища.

Переработка нефти . Переработка включает три основных процесса: перегонку, риформинг и ректификацию. В результате перегонки нефть разделяется на части – фракции, согласно молекулярному весу. Все фракции получают дальнейшую обработку для производства конечных продуктов. Наиболее ценные горючие продукты получают при химической переработке нефти: крекинге, пиролизе и ароматизации. Крекинг – это разложение высших углеводородов на простые. При сильном нагревании с катализатором (ок.500 о С) происходит каталитический крекинг, без катализатора – термический крекинг. При пиролизе нефти (700 – 900 о С) образуются этилен, бензол, толуол. Процесс ароматизации протекает в присутствии катализаторов по уравнению:

Переработка чаще сосредоточена в районах массового потребления нефтепродуктов и вдоль трасс нефтепроводов.

Транспорт нефти. Основными видами транспорта являются: трубопроводы, танкеры и железнодорожный транспорт. Так, почти вся добываемая на Ближнем Востоке нефть импортируется танкерами. Западная Европа с помощью танкеров ввозит около 90% сырой нефти, Япония – около 100%, США – 50%. Транспортировка Сахалинской нефти России также осуществляется танкерами. Водоизмещение современных танкеров составляет от 50 до 500 тыс. тонн. Имеется ряд супертанкеров водоизмещением до 800 тыс. тонн. В России основной вид транспорта нефти – нефтепроводы. Их протяженность составляет 70 тыс. километров. Для преодоления сопротивления трения вязкости нефтепродуктов в нефтепроводах требуется их насосная перекачка. Для горизонтальных трубопроводов мощность насосов равна:

где μ - вязкость передаваемой нефти; L - длина трубопровода; D -диаметр трубопровода; V - расход нефти:

,

где р 1 и р 2 – разность давлений в трубе.

Топливо - это горючие вещества, основной составной частью которых является углерод, применяемые с целью получения при их сжигании тепловой энергии.

Классификация . По физическому состоянию топливо бывает твердое, жидкое, газообразное. Стекловаренные печи работают на жидком и газообразном топливе.

К топливу, используемому для стекловаренных печей, предъявляют ряд требований: при сгорании оно должно выделять значительное количество тепла на единицу своей массы или объема, не должно выделять газов, вредно действующих на здоровье людей, а также отрицательно влияющих на материалы топок и печей, должно быть удобным для транспортирования и сжигания.

Основной характеристикой топлива является его теплотворность Q. Теплотворностью топлива называется количество тепла, выделяемое при полном сгорании единицы массы или объема топлива (1 кг жидкого топлива или 1 м 3 газообразного). Теплотворность измеряется в ккал/кг или ккал/м 3 (в СИ - кДж/кг, кДж/м 3).

Теплотворность различных видов топлива колеблется в широких пределах - от 1000 до 10 000 ккал/кг.

По происхождению топливо подразделяется на естественное и искусственное. Последнее получается в результате переработки естественного топлива. В табл. 3 приводится классификация промышленного топлива.

В промышленности используют твердое, жидкое и газообразное топливо. Различают природное топливо, добываемое на поверхности земли или в ее недрах, и искусственное, получаемое путем переработки природного.

К главным требованиям, предъявляемым к технологическому топливу, относятся: низкая стоимость добычи, низкая стоимость транспортирования, удобство применения, возможность использования с высоким коэффициентом полезного действия, малое содержание вредных примесей.

Различные виды топлива (твердое, жидкое и газообразное) характеризуются общими и специфическими свойствами. К общим свойствам топлива относятся теплота сгорания и влажность, к специфическим - зольность, сернистость (содержание серы), плотность, вязкость и другие свойства.

Теплота сгорания - количество теплоты, которое выделяется при полном сгорании 1 кг или 1 м 3 топлива. Энергетическая ценность топлива в первую очередь определяется его теплотой сгорания.

Различают высшую и низшую теплоту сгорания. Низшая теплота сгорания отличается от высшей количеством теплоты, затрачиваемой на испарение влаги, содержащейся в топливе и образующейся при сгорании водорода. Низшую теплоту сгорания учитывают для подсчета потребности в топливе и его стоимости при составлении тепловых балансов и определении коэффициентов полезного действия установок, использующих топливо. При сопоставлении различных видов топлива пользуются понятием условного топлива, характеризующимся низшей теплотой сгорания, равной 29 МДж/кг.

Влажность (содержание влаги) топлива снижает его теплоту сгорания вследствие увеличенного расхода теплоты на испарение влаги и увеличения объема продуктов сгорания (из-за наличия водяного пара).

Зольность - количество золы, образующейся при сгорании минеральных веществ, содержащихся в топливе. Минеральные вещества, содержащиеся в топливе, понижают его теплоту сгорания вследствие уменьшения содержания горючих компонентов (основная причина) и увеличения расхода тепла на нагрев и плавление минеральной массы.

Сернистость (содержание серы) относится к отрицательному фактору топлива, так как при его сгорании образуются сернистые газы, загрязняющие атмосферу и разрушающие металл. Кроме того, сера, содержащаяся в топливе, частично переходит в выплавляемый металл, сваренную стекломассу, снижая их качество. Например, для варки хрустальных, оптических и других стекол нельзя использовать топливо, содержащее серу, так как сера значительно понижает оптические свойства и колер стекла.

Состав топлива . Топливо различных видов, месторождений и шахт различается по своему составу. При рассмотрении твердого и жидкого топлива принято различать следующие его составляющие: углерод, водород, серу, кислород, азот, золу и влагу. Применительно к газообразному топливу под составом понимают в основном: оксид углерода, водород, метан, этан, пропан, бутан, этилен, бензол, сероводород и др. Входящие в состав топлива кислород и азот относят к внутреннему органическому балласту топлива, а золу и влагу - к внешнему.

Состав твердого и жидкого топлива выражают в процентах по массе, газообразного - в процентах по объему.

Твердое и жидкое топливо состоит из горючей и негорючей частей. К горючей части топлива относят углерод, водород, кислород, азот и серу. Кислород и азот не горят; их включают в состав горючей массы условно. Поэтому горючую часть топлива называют условно горючей массой. Негорючая часть топлива - балласт - состоит из влаги и золы. Органическую массу топлива составляют углерод, кислород и азот.

Топливо в том виде, в каком оно поступает в топки печи для сжигания, носит название рабочего топлива. Ввиду того что содержание в нем влаги может колебаться в широких пределах, состав топлива часто характеризуют его сухой массой.

Для обозначения состава, к которому относится содержание того или иного элемента в топливе, применяют индексы о, г, с и р, которые читаются соответственно: о - органическая масса; г - горючая масса; с - сухое топливо; р - рабочее топливо. Например, CO - содержание углерода в органической массе; Sr - содержание серы в условно горючей массе; Ас - содержание, золы в сухом топливе; Wp - содержание влаги в рабочем топливе.

Случайные статьи

Вверх