Презентация на тему "Обмен веществ – как основное свойство живой системы". Презентация на тему "Обмен веществ" презентация к уроку по биологии (8 класс) на тему Взаимное превращение веществ в организме


Процесс обмена веществ

Это комплекс химических реакций живых организмов, протекающих в определенном порядке.

Обмен веществ – постоянный процесс живой клетки.

Выдающийся русский физиолог И.М.Сеченов писал: «Организм не может существовать без окружающей среды, дающей ему энергию».



Катаболизм (реакция расщепления) - это процесс расщепления органических веществ, богатых энергией.

Анаболизм (реакция синтеза) – это синтез различных макромолекул, с использованием энергии простых веществ, образованных при реакции катаболизма, а именно аминокислот, моносахаридов, жирных кислот, азотистых оснований и АТФ с НАДФ∙Н


Схема обмена веществ в клетке

Макромолекулы клетки: белки, полисахариды, липиды, нуклеиновые кислоты

Питательные вещества – источники энергии: углеводы, жиры, белки

Химическая энергия: АТФ, НАДФ

Анаболизм

Катаболизм

Новые молекулы: аминокислоты, сахар, жирные кислоты, азотистые основания

Энергетически бедные вещества распада: CO 2 , H 2 O, NH 2


Энергетический обмен клетки, или дыхание организма.

Синтез АТФ. Дыхание и горение .

При соединении веществ с кислородом идет процесс окисления , при расщеплении – процесс восстановления . Такие реакции живых организмов называют биологическим окислением.


АТФ. Дыхание и горение.

Если горение органических веществ при участии кислорода происходит в природе, то процесс дыхания живых организмов осуществляется в митохондриях . Энергия процесса горения выделяется в виде тепла . Энергия, образованная при дыхании, используется на поддержание жизнедеятельности и сохранение активности организма.


Дыхание можно описать так:

C 6 H 12 O 6 +6O 2 → 6CO 2 +6H 2 O+2881 кДж/моль


Процесс гликолиза

Процесс расщепления глюкозы с помощью ферментов, сопровождающейся выделением части накопленной в молекуле глюкозы энергии, называется гликолизом.

Процесс расщепления глюкозы делится на три этапа:

  • Гликолиз
  • Преобразование лимонной кислоты
  • Цепь переноса электронов

Гликолиз, состоит из трех этапов: подготовительного, бескислородного, кислородного.


Подготовительный этап гликолиза

Здесь органические вещества, богатые энергией, под воздействием специальных ферментов расщепляются до простых веществ. Например, происходит расщепление полисахаридов до моносахаридов, жиров – до жирных кислот и глицерина, нуклеиновых кислот –до нуклеотидов, белков –до аминокислот.


Бескислородный этап гликолиза .

Состоит из 13 последовательных реакций, протекающих под воздействием ферментов. Исходный продукт реакции – 1моль C6H12O6 (глюкоза), в итоге реакции образуются 2 моля C 3 H 6 O 3 (молочной кислоты) и 2 моля АТФ. В данной реакции кислород вообще не участвует, поэтому этот этап и называется бескислородным . Обратите внимание на уравнение реакции:

C6H12O6+2H3PO4+2 АДФ → 2C3H6O3+2 АТФ +2H2O

В результате реакции образуется 200 кДж энергии, из них 40%, или 80кДж, запасается в двух молекулах АТФ, 120 кДж энергии, или 60%, сохраняется в клетке.


Кислородный этап гликолиза

Данная реакция от бескислородного расщепления отличается участием кислорода и полным расщеплением глюкозы с образованием конечных продуктов CO2 и H2O . В качестве начального продукта реакции участвуют 2 моля C3H6O3 (молочная кислота); в итоге синтезируются 36 молей АТФ.

2C3H6O3+6O2+36H3PO4+36 АДФ → 6CO2+36 АТФ +42H2O

Значит, основной источник энергии образуется в процессе кислородного этапа гликолиза (2600кДж)


Из 2600 кДж энергии, полученной в результате аэробного процесса гликолиза, на химические связи АТФ используется 1440 кДЖ, или 54%.

Суммарное уравнение реакции бескислородного и кислородного расщепления глюкозы выглядит так:

C6H12O6+6O2+38H3PO4+38 АДФ → 6CO3+38 АТФ +44H2O

Образованная в процессе бескислородного и кислородного расщепления энергия 80 кДж+1440кДж=1520кДж, или55%, сохраняется в виде потенциальной энергии, используется на жизненные процессы клетки, а 45% используется в виде энергии тепла.


  • Энергия выделяется в процессе горения и дыхания. Реакция сгорания протекает в природе, а реакция дыхания – в митохондриях клетки.
  • Энергия, используемая на жизненные процессы клетки, запасается в виде АТФ.
  • Молекула АТФ синтезируется при кислородном и бескислородном расщеплении глюкозы.
  • Энергия, образованная в процессе гликолиза, сохраняется на 55% в виде потенциальной энергии, а 45% переходит в энергию тепла.



Фотосинтез

Фотосинтез протекает в хлоропластах растений. В них содержится пигмент хлорофилл , придающий зеленый цвет растениям. Пигмент хлорофилл, поглощая синие и красные лучи, отражается зеленым цветом и придает соответствующую окраску растениям.

Фотосинтез имеет две фазы – световую и темновую . В световой фазе с помощью энергии солнечного света протекают реакции со ложным механизмом. К ним относятся: синтез АТФ, образование НАДФ∙Н, фотолиз воды


Фотосинтез играет важную роль в превращении энергии солнца в виде АТФ в энергию химических связей, что можно увидеть на схеме:

Фотосинтез

Энергия солнца АТФ Органическое вещество

Рост, развитие, движение и т.д.

В процессе фотосинтеза растения сохраняют энергию солнца в виде органических соединений, при дыхании молекулы питательных веществ расщепляются, высвобождая энергию. Эти явления дают энергию, необходимую для синтеза АТФ.



Темновая фаза фотосинтеза

В темновой фазе фотосинтеза большое значение имеет СО2 (оксид углерода). Моносахариды, дисахариды и полисахариды синтезируются с использованием энергии АТФ, НАДФ∙Н. Поскольку при синтезе данных органических веществ световая энергия не используется данных органических веществ световая энергия не используется, этот процесс называется темновой фазой фотосинтеза.


В темновой фазе в качестве начального продукта реакции участвует пятиуглеродный углевод (С 5). Образование трехуглеродного соединения (С 3) называют С 3 – циклом, или циклом Кальвина .

За открытие данного цикла американский биохимик М.Кальвин был удостоен Нобелевской премии.


В биосинтезе белка – сложном, многоступенчатом процессе – участвуют ДНК, иРНК, тРНК, рибосомы, АТФ и разнообразные ферменты.

Система записи генетической информации в ДНК (иРНК) в виде определенной последовательности нуклеотидов называется генетическим кодом


Транскрипция (буквально «переписывание») протекает как реакция матричного синтеза. На цепи ДНК, как на матрице, по принципу комплементарности синтезируется цепь иРНК, которая по своей нуклеотидной последовательности точно копирует (комплементарна) последовательность нуклеотидов матрицы – полинуклеотидной цепи ДНК, причем тимину в ДНК соответствует урацил в РНК.



ТРАНСЛЯЦИЯ

Следующий этап в биосинтезе белка – трансляция (лат. «передача») – это перевод последовательности нуклеотидов в молекуле иРНК в последовательность аминокислот в полипептидной цепочке.


  • Сохранение постоянства внутреннего состояния.
  • Одно из важнейших свойств организма.
  • Обмен веществ и энергии осуществляется на всех уровнях организма.





2.Обмен веществ и функции.

3. Принципы регуляции обмена веществ.

Слайд 2

Взаимосвязь обмена веществ и энергии.

Обмен веществ заключаются:

1) в поступлении веществ в организм из внешней среды;

2) в усвоении и изменении их;

3) в выделении образующихся продуктов распада.

Слайд 3

Ассимиляция и диссимиляция

  • Слайд 4

    Обмен веществ представляет собой единство двух противоположных процессов:

    ассимиляции и диссимиляции.

    Ассимиляция – это сумма процессов созидания живой материи.

    Слайд 5

    Диссимиляция

    – разрушение живой материи, распад, расщепление веществ, входящих в состав клеточных структур.

    При этом образуются удаляемые из организма продукты распада.

    Слайд 6

    Процессы ассимиляции и диссимиляции неотделимо связаны, но не всегда являются взаимно уравновешенными.

    Слайд 7

    Значение обмена веществ

    • При расщеплении питательных веществ аккумулированная в них энергия освобождается.
    • Она расходуется на нужды организма, превращаясь в электрическую, тепловую, механическую.
  • Слайд 8

    • Организм животных постоянно расходует различные вещества и энергию.
    • Поэтому он нуждается в пище, содержащей сложные органические вещества:
    • белки, жиры и углеводы.
  • Слайд 9

    Питательные вещества их функции

    • Белки
    • Углеводы
    • Энергетическая
    • Пластическая
  • Слайд 10

    Способы получения энергии

    • Аэробный
    • Анаэробный
    • Их комбинация
  • Слайд 11

    • Использование энергии в организме
    • На поддержание температуры
    • На поддержание структурно - функционального состояния тканей
    • На осуществление осмотических, химических, электрических процессов
  • Слайд 12

    Использование энергии в органах

  • Слайд 13

    • На поддержание тонуса мышц
    • На обеспечение ритмических сокращений
    • На секрецию
    • На активный транспорт веществ (всасывание, биоэлектрические процессы)
  • Слайд 14

    Пластическая функция питательных веществ

    Использование их на образование и обновление клеточных структур.

    Продолжительность жизни у сахаров и полисахаридов часы и дни.

    Слайд 15

    Принципы регуляции обмена веществ.

  • Слайд 16

    • Регуляция обмена веществ
    • направлена на поддержание
    • концентрации белков, жиров и углеводов
    • во внутренней среде на определенном уровне.
  • Слайд 17

    • Потребности в Б.Ж и У зависят
    • от функционального состояния организма:
    • покой, деятельность, после деятельности.
  • Слайд 18

    • Сдвиги содержания
    • питательных веществ являются
    • системообразующим фактором.
    • Формируется
    • функциональная система,
    • деятельность которой
    • нормализует уровень
    • питательных веществ.
  • Слайд 19

    Элементы функциональной системы.

    1) Системообразующий фактор – концентрация в крови Б. Ж. и У в виде мономеров.

    2) Сигнальное устройство представлено рецепторами, отслеживающими уровень питательных веществ.

    Слайд 20

    3) Аппарат управления

    Им является ЛРК.

    В зависимости от изменения содержания веществ в крови меняется активность ЖВС и АНС.

    Слайд 21

    В итоге изменяется:

    1) потребление веществ;

    2) всасывание;

    3) депонирование;

    4) выведение веществ из депо;

    5) утилизация веществ.

    Слайд 22

    • Проявления активации анаболизма
    • Синтез гликогена
    • Синтез жирных кислот
    • Синтез нейтральных жиров
    • Синтез белка
  • Слайд 23

    • Проявления активация катаболизма
    • Активация гликолиза
    • Активация глюконеогенеза
    • Активация протеолиза
    • Использование мономеров в цикле Кребса
  • Слайд 25

    Функциональная система регуляции уровня питательных веществ

  • Слайд 26

    • поведение
    • Б.Ж.У

    1.Поступление пищи

    2.Переваривание

    3.Всасывание

    4.Депонирование

    5.Извлечение из депо

    • Обратная связь
    • Гуморальные влияния
    • Нервные влияния

    6. Утилизация

    Слайд 27

    Характеристика обмена углеводов.

  • Слайд 28

    Значение углеводов

    а) Энергетическая функция.

    Резерв углеводов представлен гликогеном, но топливным веществом является глюкоза.

    Окисление 1г глюкозы приводит к выделению 4 ккал. тепла.

    При суточном потреблении углеводов 500г. выделяется 2000 ккал.

    Слайд 29

    Запасы гликогена

    • В печени – 500 г
    • Мобильные запасы в скелетных мышцах 200 г.
    • Обеспечивают кратковременную работу мышц
    • В сердце – 90 г
  • Слайд 30

    Пластическая функция.

    • Углеводы являются компонентами мембран,
    • межклеточных контактов,
    • соединительной ткани,
    • молекулярных и межмолекулярных связей,
    • в том числе и ответственных за иммунитет.
  • Слайд 31

    Особенности регуляции обмена глюкозы.

  • Слайд 32

    Обменглюкозы состоит из:

    1) расходования резерва из депо гликогена или пополнение депо;

    2) использования глюкозы клетками.

    Слайд 33

    Функциональная система поддержания уровня глюкозыв крови

  • Слайд 34

    • поведение
    • Глюкоза
    • N= 3,4-4,6
    • ммоль/л
    • Обратная связь
    • Гуморальные влияния
    • Нервные влияния

    1.Инсулин

    2.Контринсулярные

    Глюкагон

    Глюкокортикоиды

    Соматостатин

    Адреналин

    Слайд 35

    Характеристика обмена липидов.

    • Рассмотрим обмен нейтральных жиров – триглицеридов.
    • Их структурным компонентом являются жирные кислоты.
    • Нейтральные жиры используются главным образом как энергетические вещества.
    • Однако функции липидов многогранны.
  • Слайд 36

    Значение для организма.

    1) Энергетическая функция.

    1г жира при сгорании выделяет 9г ккал.

    Суточная потребность в жирах 60г, что обеспечивает 540 ккал.

    Наличие депо нейтрального жира позволяет обходиться без пищи в течение нескольких недель.

    Слайд 37

    • Адипоциты (жировая ткань) является в основном хранилищем биологической энергии.
    • Но жиры используются только при нехватке углеводов
  • Слайд 38

    2) Пластическая функция:

    а) Нейтральные жиры – подушка для органов;

    б) Фосфолипиды – компоненты мембран, предшественники многих БАВ (ферментов, гормонов), переносчики.

    Слайд 39

    в) холестерин – предшественник стероидных гормонов, желчных кислот, обеспечивают текучесть мембран.

    Слайд 40

    Регуляция обмена липидов.

    • Обмен липидов заключается в накоплении их в адипоцитах и освобождении с включением в обмен жирных кислот.
    • Адипоциты размножаются в первые годы жизни (поэтому нельзя ребенка перекармливать).
  • Слайд 41

    Адипоциты превращают в жиры углеводы, белки и даже фрагменты различных молекул.

    Слайд 42

    Гормональная регуляция.

    1) Гипофиз.

    Соматотропный гормон обладает жиромобилизующим действием:

    стимулирует окисление нейтральных жиров.

    2) Щитовидная железа.

    Тироксин – действие такое же, как и у соматотропного гормона, но в скелетной мускулатуре.

    Слайд 43

    3) Надпочечник.

    Глюкокортикоиды – тормозят окисление жиров.

    Слайд 44

    Поджелудочная железа.

    а) увеличивает переход глюкозы в жиры;

    б) стимулирует поглощение свободных жирных кислот адипоцитами;

    Слайд 45

    Нервная регуляция

    Осуществляется АНС:

    • Симпатическая нервная система
    • усиливает окисления жиров и увеличивает
    • выход свободных жирных кислот
    • Парасимпатическая система
    • способствует накоплению жиров в адипоцитах.
  • Слайд 46

    Поведение

    Определяет количество потребления, качественный состав пищи и уровень активности организма.

    Слайд 47

    Характеристика обмена белков.

    • Особенности обмена.
    • Обмен белков определяют по поступающему и выводимому азоту.
    • Различают:
  • Слайд 48

    1) Азотистое равновесие: введенный с пищей азот = выводимому.

    2) Отрицательный азотистый баланс: выводится азота больше, чем поступает с пищей.

    3) Положительный азотистый баланс: выводится азота меньше, чем поступает с пищей.

    Слайд 49

    Коэффициент изнашивания белка

    • Распад белка и выведение азота происходит постоянно, даже при голодании.
    • Наименьшие потери белка в условиях покоя обозначаются как коэффициент изнашивания белка (КИБ),
    • равен 32г в сутки.
  • Слайд 50

    Значение белка для организма

    1) Энергетическая функция.

    1г белка при сгорании выделяет 4 ккал. Тепла.

    Суточная потребность в белках составляет 120г, что обеспечивает выделение 480 ккал тепла.

    Слайд 51

    2) Пластическая функция.

    а) Глобулярные белки - образуют гормоны, ферменты.

    б) Фибриллярные белки являются компонентами мембран, межклеточного вещества.

    Слайд 52

    Для обеспечения пластической функции необходимо учитывать:

    Наличие в пище незаменимых аминокислот;

    Достаточность поступления белка в организм.Нервная регуляция.

    • Центр обмена белка находится в гипоталамусе.
    • При его повреждении наблюдается повышение распада белка.
    • Усиленное питание не спасает организм от гибели
    • Роль поведения.
    • В виде пищевого предпочтения.
  • Слайд 56

    Питание как фактор здоровья и его риска.

    Питание обеспечивает самочувствие, работоспособность, сопротивляемость, долголетие.

    Позволяет корректировать здоровье.

    Слайд 57

    Теоретические основы питания.

    1) Теория сбалансированного питания: количество и качество пищи должно соответствовать энергетическим и пластическим потребностям.

    Энергетическая ценность зависит от:

    а) вида деятельности и может составлять от 2000 до 5000 ккал/сутки.

    Слайд 58

    б) усваиваемости пищи.

    Животная усваивается на 95%, растительная на 80%, смешанная на 90%.

    в) Существует понятие «изодинамия питательных веществ».

    Это способность одного вещества заменять другое с точки зрения

    « энергетической стоимости» (2г. углеводов = 1г. жира).

  • Слайд 59

    Пластическая потребность организма удовлетворяется наличием в рационе разнообразных продуктов питания, которые включают:

    • 20 аминокислот,
    • 17 витаминов,
    • соли,
    • микроэлементы
    • всего 100 компонентов
  • Слайд 60

    2) Теория адекватного питания

    Суть ее в том, что:

    а) в пище должны присутствовать как нужные, так и балластные вещества;

    б) пища должна поддерживать нормальную микрофлору кишечника;

    Слайд 63

    Необходимо учитывать,

    • что после плотного обеда умственная деятельность затрудняется.
    • Большие промежутки между приемами пищи повышают аппетит, и количество пищи будет съедено больше, чем нужно.
  • Слайд 64

    • Характер питания может изменяться с профилактической целью.
    • Существует диетическое питание.
  • Посмотреть все слайды

    Описание презентации по отдельным слайдам:

    1 слайд

    Описание слайда:

    Презентация по анатомии на тему: Обмен веществ – как основное свойство живой системы Выполнила: Аминева Наталья, . г. Нижний Новгород 2015

    2 слайд

    Описание слайда:

    3 слайд

    Описание слайда:

    Понятие обмена веществ Метаболизм или обмен веществ - набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды. Метаболизм обычно делят на две стадии: в ходе катаболизма сложные органические вещества деградируют до более простых; в процессах анаболизма с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты.

    4 слайд

    Описание слайда:

    Обмен веществ и энергии это общее свойство всего живого, которое лежит в основе поддержания жизни. Живые организмы способны поглощать определенные вещества из окружающей среды, преобразовывать их, получать энергию за счет этих преобразований и выделять ненужные остатки этих веществ обратно в окружающую среду.

    5 слайд

    Описание слайда:

    Все организмы представляют собой открытые системы, являющиеся устойчивыми лишь при условии непрерывного доступа к ним веществ и энергии извне.

    6 слайд

    Описание слайда:

    7 слайд

    Описание слайда:

    Условия метаболизма Наличие энергии в виде АТФ. Наличие ферментов – биологических катализаторов. Функциональная активность органоидов, ответственных за проведение реакций окисления и синтеза. Чёткое управление со стороны клеточного ядра. Наличие исходных веществ.

    8 слайд

    Описание слайда:

    Поступление питательных веществ и энергии из внешней среды 2 3 1 Преобразование этих веществ и энергии внутри организма Использование организмом положительных компонентов данных преобразований 4 Выброс из организма ненужных компонентов преобразований во внешнюю среду

    9 слайд

    Описание слайда:

    10 слайд

    Описание слайда:

    Обмен белков Белки - это высоко молекулярные полимерные азотсодержащие вещества. Белки занимают ведущее место среди органических элементов, на их долю приходится более 50 % сухой массы клетки. Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков - актина и миозина. Белки входят в состав цитоплазмы, гемоглобина, плазмы крови, многих гормонов, иммунных тел, поддерживают постоянство водно-солевой среды организма, обеспечивают его рост. Ферменты, обязательно участвующие во всех этапах обмена веществ, являются белками. Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков - актина и миозина.

    11 слайд

    Описание слайда:

    12 слайд

    Описание слайда:

    Значение липидов в организме Липиды являются сложными эфирами глицерина и высших жирных кислот. Много жира в подкожной клетчатке, вокруг некоторых внутренних органов (например, почек), а также в печени и мышцах. Жиры входят в состав клеток (цитоплазма, ядро, клеточные мембраны), там их количество постоянно. Скопления жира могут выполнять и другие функции. Например, подкожный жир препятствует усиленной отдаче тепла, околопочечный жир предохраняет почку от ушибов и т. д. Жир используется организмом как богатый источник энергии. При распаде 1 г жира в организме освобождается энергии в два с лишним раза больше (38,9 кДж), чем при распаде такого же количества белков или углеводов. Недостаток жиров в пище нарушает деятельность центральной нервной системы и органов размножения, снижает выносливость к различным заболеваниям. С жирами в организм поступают растворимые в них витамины (A, D, Е и др.), имеющие для человека жизненно важное значение.

    13 слайд

    Описание слайда:

    Значение углеводов Углеводы – главный источник энергии, особенно при усиленной мышечной работе. У взрослых людей больше половины энергии организм получает за счет углеводов. Распад углеводов с освобождением энергии может идти как в бескислородных условиях, так и в присутствии кислорода. Конечные продукты обмена углеводов – углекислый газ и вода. Углеводы обладают способностью быстро распадаться и окисляться. При сильном утомлении, при больших физических нагрузках прием нескольких граммов сахара улучшает состояние организма.

    14 слайд

    Описание слайда:

    15 слайд

    Описание слайда:

    Значение минеральных веществ Минеральные вещества наряду с белками, углеводами и витаминами являются жизненно важными компонентами пищи человека и необходимы для построения химических структур живых тканей и осуществления биохимических и физиологических процессов, лежащих в основе жизнедеятельности организма. Подавляющее количество всех встречающихся в природе химических элементов (81) обнаружены в организме человека. 12 элементов называют структурными, т.к. они составляют 99 % элементного состава человеческого организма (С, О, Н, N, Ca, Mg, Na, K, S, P, F, Cl). Основным строительным материалом являются четыре элемента: азот, водород, кислород и углерод. Остальные элементы, находясь в организме в незначительных по объему количествах, играют важную роль, влияя на здоровье и состояние нашего организма.

    16 слайд

    Совокупность физических, химических и физиологических процессов превращения веществ и энергии в организме человека и обмен веществами и энергией между организмом и окружающей средой. Обеспечивает пластические и энергетические потребности организма. Обмен веществ


    Это достигается за счет извлечения Q из поступающих в организм питательных веществ и преобразование её в формы макроэргических (АТФ и другие молекулы) и восстановленных (НАДФ – Н-никотин- амид-адениндинуклеотидфосфат) соединений. Их Q используется для синтеза белков, нуклеиновых кислот, липидов, а так же компонентов клеточных мембран и органелл клетки для выполнения механической, химической, осмотической и электрической работ, транспорта ионов.






    Обмен веществ Энергетический обмен (диссимиляция, катаболизм) Энергетический обмен (диссимиляция, катаболизм) Пластический обмен (ассимиляция, анаболизм) Пластический обмен (ассимиляция, анаболизм) Совокупность процессов биосинтеза органических веществ, компонентов клетки и других структур органов и тканей. Обеспечивает рост, развитие, обновление биологических структур, а так же непрерывный ресинтез макроэргов и накопление энергетических субстратов. накопление энергии совокупность процессов расщепления сложных молекул, компонентов клетки, органов, тканей до простых веществ, с использованием части из них в качестве предшественников биосинтеза, и до конечных продуктов распада с образованием макроэргических и восстановленных соединений. выделение энергии


    Обмен веществ начинается с момента всасывания моносахаридов (углеводы); глицерин и жирные кислоты (жиры); аминокислоты (белки). Обмен веществ начинается с момента всасывания моносахаридов (углеводы); глицерин и жирные кислоты (жиры); аминокислоты (белки).


    На их долю приходится 50% сухой массы клетки Расщепляются до аминокислот (заменимых и не заменимых). В белке – 16% азота. 6,25 г белка при распаде образуют 1 грамм азота. N-баланс («+» и «-» баланс). Распад белка в организме происходит непрерывно. На 1 кг массы тела человек в сутки полному разрушению подлежит 0,028-0,075 г азота. За сутки выделяется 3,77 г азота (3,77г (N) х 6,25г = 23г белка (коэф. Изнашивания по Рубнеру).


    – входят в состав гормонов, катализаторов, ферментов, структур клетки. Белки строят мембраны белково-липидных комплексов, входят в состав хромосомнного аппарата, органоидов клетки, микротрубочек. Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечиваются деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков – актина и миозина. Пластическое значение


    Не велико по сравнению с углеводами и жирами. Белки - 1г – 17,6 кДж Из 20 входящих в состав аминокислот 10 незаменимых: лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан, гистидин, аргинин. Наиболее биологически ценны белки мяса, яиц, рыбы, икры, молока. Энергетическое значение.



    В белке – 16% азота. Его организм усваивает только в составе пищи. 6,25 г белка при распаде образуют 1 грамм азота. Коэффициент изнашивания по Рубнеру. На 1 кг массы тела человек в сутки полному разрушению подлежит 0,028-0,075 г азота. За сутки выделяется 3,77 г азота 3,77г (N) х 6,25г = 23г белка у здорового человека количество синтезированного N =N распавшегося. N-баланс («+» и «-» баланс). Распад белка в организме происходит непрерывно. Азотистый баланс.


    – приводит к угнетению кроветворения и синтеза иммуноглобулинов, к развитию анемии и иммунодефицита, расстройству репродуктивной функции. У детей нарушается рост, в любом возрасте - снижение мышечной ткани и печени, нарушение секреции гормонов. Снижение поступления в организм и нарушение всасывания железа


    Белка – вызывает активацию обмена аминокислот и энергетического обмена, повышение образования мочевины и увеличение нагрузки на почечные структуры с последующим их функциональным истощением. В результате накопления в кишечнике продуктов неполного расщепления и гниения белков возможно развитие интоксикации. Белковый минимум – г (у некоторых категорий до 50г и больше) в сутки. Избыточное поступление с пищей


    Регуляция Диссимиляция Ассимиляция Гормоны: соматотропный во время роста организма – увеличение массы всех органов и тканей. У взрослого человека – рост синтеза за счет проницаемости клеточных мембран для аминокислот, усиления синтеза РНК в ядре клетки. Тироксин и трийодтиронин – в определенных концентрациях стимулируют синтез белка и благодаря этому активизировать рост, развитие и дифференциацию тканей и органов. В печени – глюкокортикоиды – стимулируют синтез белка Гормоны надпочечников – глюкокортикоиды (гидрокортизон, кортикостерон) усиливают распад в тканях, особенно в мышечной и лимфоидной, а в печени наоборот, стимулируют синтез белка.




    Часть жировых компонентов тела может быть синтезирована из углеводов. : входят в состав клеточных мембран.. : их теплотворная способность более чем в 2 раза больше чем у углеводов и белков. 1г жира при расщеплении дает 38,9 кДж Пластическое значение Энергетическое значение.


    Жир всасывается из кишечника, поступает преимущественно в лимфу и в меньшем количестве непосредственно в кровь. Организм получает липиды в основном в виде т.н. нейтрального жира, который расщепляется в организме на глицерин и жирные кислоты. С пищей поступает и незначительное количество свободных жирных кислот. Незаменимые ненасыщенные жирные кислоты: линолевая, линоленовая, арахидоновая – не образуются в организме человека.


    Поступление с пищей – 30% калорийности суточного рациона. В пожилом возрасте до 25%. Увеличение потребления жира – возрастает масса тела- повышение риска развития СС и обменных заболеваний, а также рака кишечника, молочной и предстательной желез. Избыток растительного масла – повышение риска различных онкологических заболеваний (кроме оливкового масла).



    Регуляция Диссимиляция Ассимиляция ЦНС: гипоталамус – при разрушении вентромедиальных ядер – длительное повышение аппетита и усиление отложение жира Парасимпатическое влияние Гормоны: глюкокортикоиды (корковый слой надпочечников) ЦНС: гипоталамус: раздражение вентромедиальных ядер – потеря аппетита и исхудание. Симпатическое влияние Гормоны: адреналин и норадреналин (мозговой слой надпочечников); соматотропный, тироксин (щитовидная ж.), половые гормоны,


    Могут синтезироваться в организме из аминокислот и жира. Но существует минимум углеводов в пищевом рационе – 150 г. В норме поступление в сутки г.



    Основное топливо для большинства организмов. Основная роль определяется энергетической функцией. Поступает в основном в виде растительного полисахарида – крахмала и животного полисахарида – гликогена. Глюкоза крови является непосредственным источником энергии в организме. Уровень глюкозы в крови составляет 3,3-5,5 ммоль/л (60-100мг%). Снижение уровня глюкозы в крови – гипогликемия. Снижение уровня до 2,2-1,7 ммоль/л (4,-30 мг%) – «гипогликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства. Энергетическое значение. 1г – 17,6 кДж


    Из глюкозы в клетках печени синтезируется гликоген – резервный, отложенный про запас углевод. Пищевая гипергликемия (алиментарная) –после приема пищи с быстро всасывающимися углеводами. В результате глюкозурия – выделение глюкозы с мочой при уровне глюкозы в крови выше8,9-10,0 ммоль/л (мг%). Для сохранения относительного постоянства в крови происходит расщепление гликогена в печении поступление ее в кровь.


    Мозг-12%, кишечник-9%, мышцы-7%, почки – 5%. Распад углеводов в организме животных происходит как бескислородным путем до молочной кислоты (анаэробный гликолиз), так и путем окисления продуктов распада углеводов до СО 2 и Н 2 О. Захват глюкозы из притекающей крови:




    Избыточное потребление углеводов – способствует повышению липогенеза и ожирению. Постоянный избыток дисахаридов и глюкозы, быстровсасываю- щихся в кишечнике, создают высокую нагрузку на эндокринные клетки поджелудочной железы, секретирующих инсулин, что может способствовать их истощению и развитию сахарного диабета.


    Диссимиляция Ассимиляция Гормоны. Инсулин – гормон поджелудочной железы (β- к-ки островковой ткани) – усиление синтеза гликогена в печени и мышцах и повышение потребления глюкозы тканями организма) ЦНС - «сахарный укол» - укол продолговатого мозга в области дна IV желудочка. - раздражение гипоталамуса – гл. звено – кора ГМ -стресс


    Регуляция Диссимиляция Гормоны: глюкагон (альфа клетки островковой ткани поджелудочной железы); адреналин – мозгового слоя надпочечников; глюкокортикоиды – корковый слой надпочечников; соматотропный гормон гипофиза; тироксин и трийодтиронин – щитовидная железа. Из-за однонаправленности их влияния по отношению к эффектам инсулина эти гормоны часто объединяют понтяием « контринсулярные гормоны »



    Теплообразование в организме имеет 2-х фазный характер. При окислении белков, жиров и углеводов одна часть энергии используется для синтеза АТФ, другая превращается в теплоту. Теплота, выделяющаяся непосредственно при окислении питательных веществ, получила назв. Первичной теплоты. На этом этапе большая часть энергии превращается в тепло (первичная теплота), а меньшая используется на синтез АТФ и вновь аккумулируется в ее химических макроэргических связях.


    Так, при окислении углеводов 22,7% энергии химической связи глюкозы в процессе окисления используется на синтез АТФ, а 77,3% в форме первичной теплоты рассеивается в тканях. Аккумулированная в АТФ энергия используется в дальнейшем для механической работы, химических, транспортных, электрических процессов и в конечном итоге тоже превращается в теплоту, обозначаемую вторичной теплотой. Следовательно, к-во тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, образовавшаяся в организме, может быть выражена в единицах тепла – калориях или джоулях.


    – энерготраты организма в стандартных условиях, идущие на поддержание минимально необходимого для жизни клеток уровня окислительных процессов и с деятельности постоянно работающих органов и систем (дыхательной мускулатуры, сердца, почек, печени). – выражают в количеством тепла в килоджоулях (килокалориях) на 1 кг массы тела или на 1 м 2 поверхности тела за 1 ч или за одни сутки. Для среднестатистического мужчины= 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки. У женщин той же массы (70 кг) на 10% ниже. Величина основного обмена зависит от многих факторов, но особенно сильно она изменяется при некоторых эндокринных заболеваниях. Например, резкое повышение величины основного обмена наблюдается при гиперфункции щитовидной железы, а при гипофункции этой железы, он понижен. К снижению величины основного обмена приводит недостаточность функции гипофиза и половых желез.


    – совокупность основного обмена и энергетических трат организма, обеспечивающих его жизнедеятельность в условиях терморегуляционной (в условиях охлаждения до300%), эмоциональной (40-90%), пищевой и рабочей нагрузок. * I группа - работники умственного труда ккал; * II группа - работники механизированного труда и сферы обслуживания ккал; * III группа - работники умеренно тяжелого труда, связанного со значительными физическими усилиями ккал; * IV группа - работники тяжелого, немеханизированного труда ккал; * V группа - работники очень тяжелого физического труда ккал; Питание – процесс поступления, переваривания, всасывания и усвоения организмом пищевых веществ, необходимых для компенсации энерготрат, построения и восстановления клеток и тканей тела, осуществления и регуляции функций организма.


    Коэффициент полезного действия – отношение механической энергии ко всей энергии, затраченной на работу, выраженное в процентах. При физическом труде человека = от 16 до 25%. Коэффициент физической активности – степень энергетических затрат при различной физической активности = отношение общих энерготрат на все виды деятельности за сутки к величине основного обмена. По этому принципу разделены мужчины на 5 групп, а женщины на 4 группы.



    1. Пища должна обеспечивать достаточное поступление в организм энергии с учетом возраста, пола, физиологического состояния и вида труда. 2. Пища должна содержать оптимальное к-во и соотношение различных компонентов для процессов синтеза в организме (пластическая роль питательных в-в).


    Соотношение белков, жиров, углеводов = 1: 1,2: 4,5. Белков г, столько жиров, 400 г углеводов. Доля сахаров не должна превышать 10-12% углеводов суточного рациона, что соответствует г. *У грудных детей за счет жиров – 50% энерготрат, углеводов 40%, белков – 10%. У взрослых – основное – углеводы. С лет снижают калорийность на 15%, В 70 лет – на 30%. Соотношение 1,0:0,8:3,5. Высокая потребность в витаминах и минеральных элементах. Ежедневно витамина С по 0,5 г 3 раза в стуки, молочно-растительная пища, балластные в-ва, оптимальная кулинарная обработка пищи.



    3. Пищевой рацион должен быть адекватно распределен в течение суток. Разделение суточного рациона на 3-5 приемов пищи с интервалами времени 4-5 часов 3-х разовое питание завтрак – 30%, обед – 45%, ужин25%. Ужинать за 3 часа до сна. Прием пищи не

    Случайные статьи

    Вверх